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Nonlinear dynamics of topological solitons in DNA
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Dynamics of topological solitons describing open states in the DNA double helix are studied in the frame-
work of a model that takes into account asymmetry of the helix. It is shown that three types of topological
solitons can occur in the DNA double chain. Interaction between the solitons, their interactions with the chain
inhomogeneities, and stability of the solitons with respect to thermal oscillations are investigated.
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I. INTRODUCTION

It is widely accepted now that the DNA molecule has
rather movable internal structure, and that the internal D
mobility plays an important role in the functioning of th
molecule. In the thermal bath in which the DNA molecule
usually immersed, collisions with the molecules of the so
tion which surrounds DNA, local interactions with protein
drugs or some other ligands lead to activation of differ
types of internal motions. Small oscillations of individu
atoms near equilibrium positions, rotational, transverse,
longitudinal displacements of atomic groups~phosphate
groups, sugars and bases!, motions of the double chain frag
ments having several base pairs lengths, local unwindin
the double helix, transitions of DNA fragments from on
conformational form to another, for example, fromA form to
B form and so on, are only some of them. A more detai
list of internal motions and of their dynamical characterist
can be found in the works of Fritzsche@1#, Keepers and
James@2#, McClure @3#, McCommon and Harvey@4#, Yaku-
shevich@5#, and Yakushevich and Komarov@6#.

Different approaches to the modeling of the internal DN
mobility are known. One of them has been developed
Prohofsky and co-authors@7–10#, who considered DNA as a
lattice and took into account the motions of all atoms~except
of hydrogen atoms! in the lattice cell. Their approach wa
limited, however, by harmonic approximation, and this lim
tation did not permit them to model large amplitude intern
motions such as local unwinding of the double helix. A
other approach, based on the methods of molecular dyna
and first proposed by Levitt@11# and Tidor and co-author
@12#, is known now as one of the most powerful tools
investigation of the internal DNA mobility@13#. This ap-
proach is not limited by harmonic approximation and the
fore it can be used to study internal motions of both large
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small amplitudes. The approach has, however, one esse
deficiency: because of the limited possibilities of mode
computers it cannot be used to study long DNA fragmen
and therefore it does not suit studies of the processe
propagation of local structural distortions along the m
ecule.

In this paper, to investigate the internal DNA mobility, w
use the approach developed in a series of works@14–25#.
Peculiarity of the approach is that it uses rather simple m
els of the internal DNA dynamics, which take into accou
only one or a few types of the DNA internal motions. Th
simplification gives us an opportunity to find analytical s
lutions of corresponding dynamical equations imitating bo
small and large amplitude internal motions. And one mo
merit of the approach is that it gives a possibility to study t
internal dynamics of long DNA fragments. Three works
the series are most interesting.

The first one has been done by Englander and co-aut
@14# who studied the dynamics of DNA open states. Th
model took into account only rotational motions of nitro
bases which, as it was suggested, made the main contribu
to formation of the open states. Another paper belonged
Peyrard and Bishop@22#, who studied the process of DNA
denaturation. Suggesting that the stretching of the hydro
bonds in pairs made the most contribution into the proce
they created a simplified model where only transverse m
tions of bases along the direction of the hydrogen bo
were taken into account. The third important paper was p
lished by Muto and co-authors@21#. These authors suggeste
that two types of internal motions made the main contrib
tion to DNA denaturation process: transverse motions al
the hydrogen bond direction and longitudinal motions alo
the backbone direction. Their model consisted of two po
nucleotide strands linked together through the hydrog
bonds described by a Lennard-Jones potential, and the p
phodiester bridges in the backbone were described by
anharmonic Toda potential.

Further development of the approach was limited for s
eral years by small improvements of the models and th
combinations, and only involving numerical methods
©2002 The American Physical Society14-1
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simulation of the internal DNA dynamics gave a new im
pulse and interesting possibilities which have been reali
in the works of Van Zandt@26#, Techera and co-authors@27#,
Salerno@25#, Barbi and co-authors@28,29#, and Campa@30#.
Just these methods permitted not only to study a possib
of appearance of large amplitude localized distortions in
DNA structure, but also to investigate their stability, the
fluence of thermal noise, the interactions between the dis
tions, the propagation of them along the homogeneous
inhomogeneous DNA.

In all these works, however, the asymmetry of the b
pairs was neglected. That is, both bases in a pair were m
eled as identical structural elements with the same chara
istics~masses, moments of inertia and so on!. But even in the
case of homogeneous~synthetic! DNA the asymmetry exists
Indeed, if, for example, one of the polynucleotide cha
consists of only adenines, the other chain should consis
thymines, and this homogeneous model is substanti
asymmetrical. Just this type of asymmetrical model is st
ied in this work. To simplify calculations, we consider on
rotational motions of nitrous bases around the sug
phosphate chains in the plane perpendicular to the main
of the double chain. We find solitary wave solutions descr
ing open states in the double helix. We classify the solito
investigate stability of the solitons with respect to therm
oscillations, interactions between the solitons, and inte
tion of the solitons with inhomogeneities of the chain.
solve all these problems, we use numerical-variation me
ods efficiency of which was proved in the works@31–36#,
devoted to the analysis of nonlinear dynamics of molecu
chains and polymer crystals.

II. DISCRETE MODEL OF THE DNA DOUBLE HELIX

Let us considerB form of the DNA molecule, the frag-
ment of which is presented in Fig. 1. The lines in the figu
correspond to the skeleton of the double helix, black a
gray rectangles correspond to bases in pairs (AT andGC).
Let us focus our attention on the rotational motions of ba
around the sugar-phosphate chains in the plane perpendi

FIG. 1. Fragment of the DNA double chain consisting of thr
AT base pairs. Longitudinal pitch of the helixa53.4 Å; transverse
pitch h516.15 Å.
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to the helix axis. Below we shall call the chain placed on t
left as first chain, and the right chain as second chain. P
tive directions of the rotations of the bases for each of
chains are shown in Fig. 1.

Let us consider the plane DNA model where the chains
the macromolecule form two parallel straight lines placed
a distanceh from each other, and the bases can make o
rotation motions around their own chain, being all the tim
perpendicular to it. Let us suggest thatwn,1 is the angular
displacement of thenth base of the first chain, andwn,2 is the
angular displacement of thenth base of the second chain
Then the Hamiltonian of the double chain takes the form

H5(
n

H 1

2
I n,1ẇn,1

2 1
1

2
I n,2ẇn,2

2 1en,1 sin2
wn11,12wn,1

2

1en,2 sin2
wn11,22wn,2

2
1Vab~wn,1 ,wn,2!J . ~1!

The first two terms of Hamiltonian~1! correspond to the
kinetic energy of thenth base pair. HereI n,1 is the moment
of inertia of thenth base of the first chain;I n,2 is the moment
of inertia of thenth base of the second chain, and the po
denotes differentiation in timet. For the base pairab (ab
5AT,TA,CG,GC) the moment of inertia is equal toI n,1

5mar a
2 , I n,25mbr b

2 . The value of the base massma , the
length r a , and the corresponding moment of inertiaI a

5mar a
2 for all possible base pairs are presented in Table

The third and the fourth terms in Hamiltonian~1! describe
interaction of the neighboring bases along each of the m
romolecule chains. Parameteren,i characterizes the energy o
interaction of thenth base with the (n11)th base of thei th
chain (i 51,2). The value of the parameter is unknown. B
if we take into account the fact that angular displacemen
one base is accompanied not only by overcoming the ba
due to the stacking interaction, but also by substantial de
mation of the dihedral and valence angles, we can sug
that the energy of the displacementen,i should be wittingly
more than the stacking 40–60 kJ/mol@37#, and it should
weakly depend on the type of the base. This gives us a p
sibility to suggest later on thaten,1[en,2[e.60 kJ/mol.

The fifth term in Hamiltonian~1! corresponds to the en
ergy of interaction between conjugated bases of differ
chains. Here indexab5AT,TA,GC,CG determines the
type of the base pair. It is convenient to model the energy
interaction of conjugated pairs by the potential

TABLE I. The values of the parametersma ,r a ,I a5mar a
2 , for

all possible basesa (mp51.673 43310227 kg is the proton mass!.

a ma (mp) r a (Å) I a (310247 m2 kg)

A 135.13 5.8 7607.03
T 126.11 4.8 4862.28
G 151.14 5.7 8217.44
C 111.10 4.7 4106.93
4-2
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Vab~wn,1 ,wn,2!5
1

2
KabuRn2Rn

su2, ~2!

whereRn is the vector connecting the end of the base (n,1)
with the end of the base (n,2), Rn

s is the value of the vecto
for the ground state of the chainwn,1[0, wn,2[0. Potential
~2! can be written in a more simple form,

Vab~wn,1 ,wn,2!5Kab$r a~r a1r b!~12coswn,1!

1r b~r a1r b!~12coswn,2!

2r ar b@12cos~wn,12wn,2!#%. ~3!

The rigidity of interactionKab can be estimated from th
energy of interaction

eab5
1

2 FVabS 0,
p

2 D1VabS p

2
,0D G5

1

2
Kab@r a

21r b
2 #.

The pairAT (TA) is stabilized by two hydrogen bonds~they
are shown in Fig. 1 by dotted lines!, and the pairCG (GC)
by three hydrogen bonds. Therefore we suggest later on
eAT5eTA52eCG/352eGC/35e.

For the value of the energy of interaction of the bases
AT base pair we can take the double energy of hydro
bond e540 kJ/mol. Then the rigidity of the bond betwee
the bases is equal to

KAT5KTA5
2

3
KGC5

2

3
KCG5K5

2e

r a
21r b

2
50.234 N/m.

~4!

On the other hand, the value of the parameter can be
mated from the frequency spectrum of small amplitude
cillations of the chain. We shall obtain it in the followin
section.

III. DISPERSION EQUATION

The system of equations of motion, which corresponds
macromolecule Hamiltonian~1!, takes the form

I n,1ẅn,152
]H

]wn,1
,

I n,2ẅn,252
]H

]wn,2
, ~5!

n50,61,62, . . . .

Let us consider a homogeneous macromolecule in wh
only one type of base pair exists,ab (I n,1[I a , I n,2[I b!.

Insert small amplitude plane wave

„wn,1~ t !,wn,2~ t !…5~w1 ,w2!Aei (qan2vt)

into the system of equations~5!. Here (w1 ,w2) is a two-
dimensional vector that is normalized to 1,A!p is the am-
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plitude, qP@0,p/a# is the wave number. It is easy to sho
that in the linear approximation the frequencyv should sat-
isfy the dispersion equation

v41Bv21C50, ~6!

where

B5FKab~ I ar b
21I br a

2 !14k~ I a1I b!sin2
qa

2 G Y I aI b ,

C5F4kKab~r a
21r b

2 !sin2
qa

2
116k2 sin4

qa

2 G Y I aI b ,

k5e/2 is the rigidity of the interaction of neighboring bas
along the chain.

Dispersion curve~6! has two branches:

va~q!5@~B2AB224C!/2#1/2,

vo~q!5@~B1AB224C!/2#1/2.

The upper curvev5vo(q) corresponds to optical phonon
the lower curvev5va(q) corresponds to acoustic phonon
in the chain.

The frequencyva(q) tends to zero asq→0. Let us deter-
mine the velocity of acoustic phonons as

v05 lim
q→0

v~q!

q
5aAk~r a

21r b
2 !

I ar b
21I br a

2
.

The dependence of the sound velocityv0 in the homoge-
neous moleculeab5AT (GC) on the energy of rotatione is
presented in Table II.

According to different estimations@38–40# the velocity of
sound in DNA is in the interval from 1890 m/s till 3500 m/
From Table II it is clear that among three typical valuese
560,600,6000 kJ/mol the valuee56000 kJ/mol is the best
Just this value will be used in the numerical investigations
the dynamics of topological solitons.

The lowest value of the optical frequency is

vo~0!5AKab~ I ar b
21I br a

2 !/I aI b. ~7!

According to Ref.@41# vo(0)535 cm21, therefore from Eq.
~7! we have

KAT5K54.744 N/m, KCG5
3

2
K57.117 N/m. ~8!

TABLE II. Dependence of sound velocityv0 ~m/s! on the value
of the parametere for homogeneousab5AT (GC) chain.

e ~kJ/mol! 60 600 6000

AT 219.47 694.02 2194.7
GC 223.38 706.39 2233.4
4-3
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This estimation of the value of the rigidity differs from th
obtained in Eq.~4!. The use of the value given in Eq.~4!
gives substantially lower value of the frequencyvo(0)
57.77 cm21. Thus we have the following estimation of th
value of the parameterK:0.234<K<4.744 N/m. The view
of the dispersion curves for homogeneous chain (ab5AT)
with different values of the parameters is presented in Fig

For numerical investigation of the soliton dynamics w
shall take the intermediate valueK50.8714 N/m that corre-
sponds to the frequencyvo(0)515 cm21, and energy of in-
teractioneAT5149 kJ/mol.

IV. NUMERICAL METHOD OF FINDING SOLITARY
WAVE SOLUTIONS

Complexity of the system of equations of motion~5! does
not permit us to carry out analytical investigation. Therefo
we shall study it numerically and use the variation techniq
proposed in Ref.@32#, to find solitonlike solutions.

Let us consider homogeneous DNA molecule@for all n
I n,15I a , I n,25I b , whereab5AT (TA,CG,GC)#. We shall
find the solution of system~5! in the form of a wave with
smooth, constant profile. For this purpose, let us suggest
wn,1(t)5w1(j), wn,2(t)5w2(j), where the wave variablej
5na2vt, andv is the velocity of the wave.

Let us assume, that the functionsw1 and w2 smoothly
depend onj. Then the time second derivatives can be s
stituted for discrete derivatives,

d2wn,i

dt2
5v2

]w i

]j2
5v2~wn11,i22wn,i1wn21,i !/a

2, ~9!

i 51,2. Using these relations, we can write the equations
motions~5! in the form

FIG. 2. Acoustic v5va(q) ~curve 1,3,5! and optical v
5vo(q) ~curve 2,4,6! branches of the dispersion curve for hom
geneous chain (ab5AT, e560,600,6000 kJ/mol! for chain with
K50.234 N/m~a! andK54.744 N/m~b!.
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Here the functional

L5(
n

H v2

2a2
@ I a~wn11,12wn,1!

21I b~wn11,22wn,2!
2#

2eS sin2
wn11,12wn,1

2
1sin2

wn11,22wn,2

2 D
2Vab~wn,1 ,wn,2!J

is a discrete version of the Lagrangian

L5(
n

F1

2
I n,1ẇn,1

2 1
1

2
I n,2ẇn,2

2 2eS sin2
wn11,12wn,1

2

1sin2
wn11,22wn,2

2 D2Vab~wn,1 ,wn,2!G ,
which corresponds to the system of equations of motion~5!.

For further analysis it is convenient to write the function
L in the dimensionless form

L̄52L/K~r A
21r T

2!5(
n

Fca~wn11,12wn,1!
21cb~wn11,2

2wn,2!
22gS sin2

wn11,12wn,1

2
1sin2

wn11,22wn,2

2 D
2Uab~wn,1 ,wn,2!G , ~11!

where the dimensionless coefficients

ca5
v2I a

Ka2~r A
21r T

2!
, cb5

v2I b

Ka2~r A
21r T

2!
,

parameter of cooperativity

g52e/K~r A
21r T

2!, ~12!

and dimensionless potential Uab(wn,1 ,wn,2)
52Vab(wn,1 ,wn,2)/K(r A

21r T
2).

Soliton solution of the system~10! can be found numeri-
cally as a solution of the problem on conditional minimum

2L̄→ min
w2,i , . . . ,wN21,i , i 51,2

: ~13!

w1,15w2`,1 , w1,25w2`,2 , ~14!

wN,15w`,1 , wN,25w`,2 . ~15!

Boundary conditions~14!,~15! for the problem~13! deter-
mine the type of the soliton solution. We should take a rat
large number forN, in order that the form of the solution o
4-4
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NONLINEAR DYNAMICS OF TOPOLOGICAL SOLITONS IN DNA PHYSICAL REVIEW E66, 016614 ~2002!
the problem might not depend on its value. For this purp
it is enough to takeN ten times larger than the width of th
soliton.

The soliton solution of the problem~13! can be character
ized by the topological chargeq5(q1 ,q2), where qi
5(w`,i2w2`,i)/2p, i 51,2, is an integer (qi50,61,
62, . . . ). To findsoliton solution with topological chargeq,
it is necessary to solve the problem on minimum~13! with
boundary conditions,

w2`,15w2`,250, w`,152pq1 , w`,252pq2 .

This problem was solved by the method of conjugated g
dient. The valueN52000 was taken, and the initial point

wn,i5@11tanhm~n2N/2!#pqi , i 51,2,

was used. Herem is a changeable parameter.
Soliton solution~solution in the form of a solitary wave!

$wn,1
s ,wn,2

s %n51
N corresponds to topological soliton with th

energyE5K(r A
21r T

2)Ē/2, where the dimensionless energ

Ē5 (
n51

N21 Fca~wn11,12wn,1!
21cb~wn11,22wn,2!

2

1gS sin2
wn11,12wn,1

2
1sin2

wn11,22wn,2

2 D
1Uab~wn,1wn,2!G

and with the diameter

D5112A~n2n̄!2pn,

where the point

n̄5 (
n51

N

npn ,

determines the position of the soliton center, and the form

pn5Ēn /Ē5H 1

4
@ca~wn11,12wn21,1!

21cb~wn11,2

2wn21,2!
2#1

1

2
gFsin2

wn11,12wn,1

2
1sin2

wn11,22wn,2

2

1sin2
wn,12wn21,1

2
1sin2

wn,22wn21,2

2 G
1Uab~wn,1wn,2!J UĒ

gives the distribution of the energy along the chain.

V. DYNAMICAL PROPERTIES OF SOLITONS

At the beginning let us consider stationary soliton so
tions of the problem~13!. In the dimensionless functionalL̄,
01661
e
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coefficientsca5cb50 whenv50. So, only one dimension
less parameterg ~12! that characterizes cooperativity of ro
tational motions remains in functional~11!. The existence of
soliton solution and its form depend on the value of t
parameter.

A. Stationary solution

The results of numerical investigations of the proble
~13! show that in the homogeneous chains stationary to
logical soliton solutions exist when the parameter of coop
ativity g is larger than the threshold value:g>g0.0. The
absence of the soliton topological stability wheng,g0 can
be explained in the following way. Any topological defe
can be eliminated by turning the DNA bases. The turning
one base by about 360° transfers the system to the in
state, that is,f i ,n[f i ,n62p. And this is why the narrow
solitons with the size equal to one link of the chain a
equivalent to the ground state and this is why they are
stable. So, only relatively wide solitons with the gene
turning consisting of several small changes in rotatio
angles that is whenuf i ,n112f i ,nu!2p, are stable. Depen
dence of the threshold valueg0 on the soliton topological
chargeq for homogeneousAT andGC chains are given in
Table III.

From Fig. 3 it becomes clear that the soliton energyĒ and
its width D monotonically increase when the parameter
cooperativityg increases. For soliton stability it is necessa
that its widthD.4.33. The view of stationary solitons wit
the parameters of cooperativityg510 andg5150 is pre-
sented in Fig. 4. In the case of the soliton with topologic
charge q5(1,0), the first component has the form of
smooth step~whenn monotonically changes, the base of th
first of two DNA chains makes a complete turn! accompa-
nied by smooth small-amplitude deformation in the seco
component@Fig. 4~a!#. In the case of the soliton withq
5(0,1), only the second component has the form of a s
@Fig. 4~b!#. In the case of soliton withq5(1,1), each of the
components has the form of a step@Fig. 4~c!#, with steps
relatively displacing one another. Later on we shall show t
this soliton is the bound state of two topological solito
with the chargesq15(1,0) andq25(0,1). There exist two
equivalent states of the soliton: the left stateq5(1,1)l , when
the soliton with the chargeq1 is on the left side of the soliton
with the chargeq2 @Fig. 4~c!#, and the right stateq
5(1,1)r , when the soliton with the chargeq1 is on the right
side of the soliton with the chargeq2.

When e56000 kJ/mol andK50.234 N/m the paramete
of cooperativityg5150.24@g0, and whenK50.8714 N/m
the parameterg540.34.g0 ~see Table III! for all types of

TABLE III. Dependence of the threshold value of the parame
of cooperativityg0 on the value of the soliton topological charg
q5(q1 ,q2) for homogeneousab5AT (GC) chain.

(q1 ,q2) ~1,0! ~0,1! ~1,1!

AT 8.3 5.7 8.3
GC 12.0 8.2 12.0
4-5
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topological solitons. So, for these values of the rigidity p
rameterK stable solitons with different topological charg
exist. For maximum value of the rigidity parameterK
54.744 N/m the parameter of cooperativityg57.41,g0,
and this means that the stable topological solitons are ab
Thus the problem of the existence of topological solito
~open states! in the DNA reduces to the problem of receivin
exact estimation of the parameterse andK. But this is, how-
ever, a rather difficult problem. We think that the valuese
56000 kJ/mol, K50.8714 N/m, when all three types o
solitons exist, are the most grounded. And we shall use th
values for further calculations.

Dependence of the energyE and the diameterD of sta-
tionary topological soliton on its topological chargeq in the
chain withe56000 kJ/mol and the transverse rigidity dete
mined by formulas~4! and ~8!, are given in Table IV. From
the data of the table it follows that the energy of interact
of the solitons with charges~1,0! and ~0,1! is equal toDE
5E(1,0)1E(0,1)2E(1,1)590.71 kJ/mol for the chain with
the rigidity of the transverse interactionK50.8714 N/m, and
the energy is equal toDE542.16 kJ/mol for the chain with
K50.234 N/m.

B. Nonstationary solutions

Numerical investigation of the problem~11! shows that in
the homogeneous chain topological soliton has the inte
of the velocities 0<s<s1,1, wheres5v/v0 is the dimen-
sionless velocity andv0 is the velocity of sound. Dependenc
of maximum velocity of the solitons1 on its chargeq, on the
type of base in the chainab, and on the rigidity of the
transverse interactionK is presented in Table V.

FIG. 3. Dependence of the dimensionless soliton energyĒ and
the widthD on the velue of the parameter of cooperativityg when
q5(1,0),~0,1!,~1,1! ~curves 1,2,3! in homogeneousAT ~a!,~c! and
GC chains~b!,~d!.
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Dependence of the soliton energyE and the diameterD
on the dimensionless velocitys is presented in Fig. 5. With
increase in the soliton velocity its energy monotonically
creases, and the diameter monotonically decreases. Usin
dependenceE(s) we can find the mass of rest of the top
logical soliton,

M5 lim
s→0

2@E~s!2E~0!#

s2v0
2

.

FIG. 4. The view of stationary soliton with the topologic
chargeq5(1,0) ~a!; q5(0,1) ~b!; q5(1,1)l ~c!. Continuous lines
correspond to displacements by the first componentwn,1 ; dotted
lines correspond to displacements by the second componentwn,2 ;
thin lines correspond to chain withg510; flat lines correspond to
chain withg5150.

TABLE IV. Dependence of the energyE and the diameterD of
stationary topological soliton on its topological chargeq with two
values of the transverse rigidityK.

ab5AT ab5GC
K ~N/m! q E ~kJ/mol! D E ~kJ/mol! D

~1,0! 2776.52 16.59 3405.48 13.69
0.234 ~0,1! 2237.36 19.58 2733.60 16.18

~1,1! 4971.72 42.85 6087.54 35.13
~1,0! 5329.76 9.03 6394.96 7.64

0.8714 ~0,1! 4302.09 10.59 5146.38 8.98
~1,1! 9551.14 22.60 11444.96 18.93
4-6
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NONLINEAR DYNAMICS OF TOPOLOGICAL SOLITONS IN DNA PHYSICAL REVIEW E66, 016614 ~2002!
Dependence of the mass of restM of the soliton on its charge
q, on the type of the bases of the chainab and on the
rigidity of the transverse interactionK is presented in Table
VI.

Numerical investigation shows that all topological so
tons at all permitted velocities are stable. They move alo
the chain with constant velocity, their form and energy be
conserved. Thus, the specificity of the chain of the DN
molecule leads to a principal effect consisting in the pos
bility of preferable localization of soliton excitations on on
chain. Moreover, it appears that soliton excitation with t
charge~1,1! is a bound state of two excitations localized
separate chains.

TABLE V. Dependence of the maximum value of the solito
velocity s1 on its topological chargeq, the soliton moving in the
homogeneousab chain with the transverse rigidityK.

K ~N/m! q AT GC

~1,0! 0.77 0.70
0.234 ~0,1! 0.88 0.84

~1,1! 0.77 0.70
~1,0! 0.64 0.55

0.8714 ~0,1! 0.86 0.84
~1,1! 0.65 0.56

FIG. 5. Dependence of the energyE and the diameterD of the
soliton that moves along homogeneousAT chain and has the charg
q5(1,0) ~curves 1 and 4!, q5(0,1) ~curves 2 and 5!, and q
5(1,1) ~curves 3 and 6! on the dimensionless velocitys (e
56000 kJ/mol,K50.8714 N/m).
01661
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VI. INTERACTION OF TOPOLOGICAL SOLITONS

DNA is a rather long molecule, and several open sta
can be activated in it simultaneously. Therefore it is intere
ing to consider the problem of interaction of solitons imita
ing the open states.

Numerical approach~13! permits us to investigate th
problem and to obtain the dependence of the energy of a
of solitons with the chargesq1 ,q2 on the distance betwee
their centersn1 ,n2. For this purpose it is necessary to ta
the boundary conditions and the initial point, which corr
spond to a pair of topological solitons with the centers mo
ing away at a distanceR. When minimizing the energy of the
systemE52L, it is necessary also to fix the turns of th
bases, which correspond to the centers of solitons. Then
energy of the obtained stateE(R) corresponds to the energ
of a pair of topological solitons, the solitons being at a d
tanceR5n22n1 from each other. By changing positions o
the soliton centers, we can obtain the potential of interact

Uq1 ,q2
~R!5E~R!2E~q1!2E~q2!,

whereE(q1) andE(q2) are the energies of isolated soliton
The potential of interaction of solitons of different type

and the potential of topological solitons with the charges
the same sign are presented in Fig. 6. The potential of
solitons of different types withq15(1,0) andq25(0,1) has
the form of symmetrical double well potential~Fig. 6, curve
1!. Maximum of the potential is reached whenR50, that is

TABLE VI. The dependence of the soliton mass of restM ~the
values are given in proton mass unitsmp) on its topological charge
q, the soliton being in the homogeneousab chain with the trans-
verse rigidityK.

K ~N/m! q AT GC

~1,0! 7640 9663
0.234 ~0,1! 4052 4064

~1,1! 11 581 13 590
~1,0! 14 978 18 730

0.8714 ~0,1! 7899 7804
~1,1! 22 660 26 265

FIG. 6. Potential of interaction of solitonsUq1 ,q2
(R) with q1

5(1,0), q25(0,1) ~curve 1!; q15(1,0), q25(0,21) ~curve 2!;
q15q25(1,0), andq15q25(0,1) ~curve 3!.
4-7
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L. V. YAKUSHEVICH, A. V. SAVIN, AND L. I. MANEVITCH PHYSICAL REVIEW E 66, 016614 ~2002!
when the centers of the solitons are placed at the neighbo
chains and when the solitons are opposite to each o
From energetic point of view this configuration of the so
tons of different chains is the most disadvantageous. M
mum of the energy is reached whenR5620a. Thus two
solitons of this type can form two energetically equivale
coupled states. One of the states~left minimum of the poten-
tial of interaction! corresponds to the left isomer of the t
pological soliton with the chargeq5(1,1)l , and the other
state~the right minimum of the potential of interaction! cor-
responds to the right isomer of the solitonq5(1,1)r .

If solitons have different signs of chargesq15(1,0) and
q25(0,21), the potential of interaction has a bell-like for
with one maximum atR50 ~Fig. 6, curve 2!. From the po-
tential it follows that the solitons that belong to differe
chains should repulse from each other. Solitons with
same sign of charge@q15q25(1,0),~0,1!# also repulse from
each other.

When distance between the solitons decreases, the en
monotonically increases and goes to infinity whenR→0
~Fig. 6, curve 3!.

The potential of interactionUq1 ,q2
(R) permits us to pre-

dict the result of repulsion of solitons with the chargesq1
and q2. Let us model the repulsion of the solitons. For t
purpose, let us consider a double chain consisting oN
54000 base pairs. At the end of each of the polynucleo
chains let us introduce viscous friction that provides w
absorption of phonons. The system of equations of mo
~5!, n51,2, . . . ,N, was integrated numerically with the in
tial condition that corresponds to two topological solito
with the centers placed in the pointsn15N/4 and n2
53N/4 and with the velocitiess152s25s.0.

The results show that collision of solitons having equ
signsq15q25(61,0),(0,61) leads to their reflection at on
another. When the velocitiess are small, the reflection is
practically elastic, and when the velocitiess are large, colli-
sion is accompanied by slight emission of phonons. Collis
of solitons withq15(61,0), q25(0,71) ands50.5 leads
to their reflection, accompanied by slight emission
phonons. This behavior is in a good agreement with the fo
of corresponding potential of interaction~Fig. 6, curve 2!. To
pass through one another, solitons need to overcome en
barrier Uq1 ,q2

(0)52025 kJ/mol. Thus, their kinetic energ

should be equal to Ek(s)5Eq1
(s)1Eq2

(s)2Eq1
(0)

2Eq2
(0).Uq1 ,q2

(0). This condition is fulfilled only in the
vicinity of the most possible values of the velocity~see. Fig.
5!. So, whens50.5, the kinetic energyEk51732 kJ/mol is
lower than the height of the energy barrier~reflection takes
place!, and whens50.6, the energyEk53000.9 kJ/mol is
higher than the barrier~solitons pass through one another!.

Solitons with the chargesq15(61,0),q25(0,61) attract
one another at a distanceR.20a, and when the distance i
shorter they repulse one another. Here the energy ba
Uq1 ,q2

(0)54989 kJ/mol does not permit solitons to pa
through one another. Solitons always reflect. Formation
the bound state does not occur even when the value of
velocity is small. It is explained by the small value of bon
energyDE591 kJ/mol.
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ng
er.

i-

t

e

rgy

e

n

l

n

f
m

rgy

ier

f
he

The potential of interaction of different topological sol
tons with the charges of opposite signs (q152q2) is pre-
sented in Fig. 7. The potential of interaction of on
component solitons @q15(1,0),(0,1)# monotonically
decreases with decrease in the distance between the sol
When R→0, the potentialUq1 ,q2

(R)→2@E(q1)1E(q2)#.

At a distanceR50 solitons completely recombine.
The potential of interaction of two-component solito

with the charges of different signs has a similar form. If t
solitons have different polarity, that is, if the first soliton is
left isomer @q15(1,1)l # and the second soliton is a righ
isomer @q25(21,21)r #. Solitons of that type attract on
another. Their collisions always leads us to recombination
the solitons.

If solitons have the same polarity, they repulse whenR
.20a, and attract when the distances are shorter. Recom
nation of the solitons requires overcoming the energy bar
1730 kJ/mol. Solitons overcome the barrier only whens
.0.38, and the value of their kinetic energy is more than
height of the barrier. When the value of the velocity
smaller, solitons reflect, and when the value is larger th
recombine~Fig. 8!. During recombination the energy of sol
tons is spent for intensive emission of phonons. Breather
excitations can be also formed.

Collision of one-component soliton with two-compone
soliton can lead~depending on the relationship of the sig
of charges and on the polarity of the two-component solit!
to their partial recombination or to inelastic reflection a
companied by disintegration of the two-component solito
So, at the velocitys50.5 collision of the soliton having the
chargeq15(1,0), with the two-component soliton having th
chargeq25(1,1)l , leads to inelastic reflection of the firs
soliton, and at the same time the second soliton disintegr
into two one-component solitons with the charges~1,0! and
~0,1! ~Fig. 9!.

VII. EFFECT OF THE CHAIN INHOMOGENEITIES ON
THE DYNAMICS OF TOPOLOGICAL SOLITONS

Till now our investigation was limited by the conside
ation of homogeneous model of DNA. The real DNA i
however, a substantially inhomogeneous system, therefo

FIG. 7. Potential of interaction of solitonsUq1 ,q2
(R) with q1

5(1,1)l , q25(21,21)l ~curve 1!; q15(1,1)l , q25(21,21)r

~curve 2!; q15(1,0), q25(21,0) ~curve 3!; q15(0,1), q25(0,
21) ~curve 4!.
4-8
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NONLINEAR DYNAMICS OF TOPOLOGICAL SOLITONS IN DNA PHYSICAL REVIEW E66, 016614 ~2002!
is of special interest to consider the effect of the chain in
mogeneity on the dynamics of topological solitons. In t
inhomogeneous chain, the energy of stationary solitonE will
depend on the position of the center of the solitonn̄. To
move, soliton requires to overcome the energetic poten
barrierE(n̄). To find the energy of the soliton with the cent
at the pointn5n̄ we need to numerically solve the proble
of minimizing,

E→ min
w2,i , . . . ,wN21,i , i 51,2

: ~16!

w1,15w2`,1 , w1,25w2`,2 , ~17!

wN,15w`,1 , wN,25w`,2 , ~18!

where the energy

E5(
n

FeS sin2
wn11,12wn,1

2
1sin2

wn11,22wn,2

2 D
1Vabn

~wn,1 ,wn,2!G ,
whereabn is the sequence of the base pairs along the ch
The boundary conditions~17!,~18! are the same as those

FIG. 8. Recombination of solitons with the same signs
charges and the same polarities@q15(1,1)l , q25(21,21)l , s
50.5#.
01661
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the problem~13!. To fix the soliton center position we nee
to solve the problem of minimizing~16! with respect to vari-
ables wn,i where 2<n<N21, nÞn̄, i 51,2. For soliton
with charge q1Þ0 it is necessary to fix the valuew n̄,1
5pq1, and for soliton whereq2Þ0 is the valuew n̄,25pq2.

The problem on conditional minimum~16! has been
solved by the numerical method of conjugate gradient.
took N52000. A possible view of energetic profile of th
soliton moving in the inhomogeneous chain is presented
Fig. 10.

At the beginning, let us estimate the effect of point inh
mogeneities. From Fig. 10~a! it is obvious that one-point
defect in the homogeneousAT chain leads to the appearanc
of localized potential barrier with height equal toEd
5150 kJ/mol. To overcome the barrier, the soliton kine
energy should satisfy the conditionEk(s)5E(s)2E(0)
.Ed . Soliton can overcome the barrier only when its velo
ity s.sd , where the threshold value of the velocitysd is
taken from equationE(sd)2E(0)5Ed . From the data of
Fig. 5 it is easy to find that for soliton withq5(1,0) the
velocity sd50.21, for soliton withq5(0,1) the velocitysd
50.28, and whenq5(1,1) the velocitysd50.17.

Let us model numerically the interaction of soliton wi
local defect of the homogeneousAT chain. For the purpose
let us consider homogeneousAT chain consisting ofN
54000 bases with one baseGC in the middle of the chain in

f FIG. 9. Disintegration of two-component soliton@q25(1,1)l #
when it comes into collision with one-component soliton@q1

5(1,0)#. The velocity of the movement iss50.5.
4-9
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L. V. YAKUSHEVICH, A. V. SAVIN, AND L. I. MANEVITCH PHYSICAL REVIEW E 66, 016614 ~2002!
the pointn5N/2. Suggest that at the initial time a topolog
cal soliton is in the pointn5N/4 and consider its movemen
through the chain inhomogeneity. The results of numer
modeling of the soliton dynamics show that, independen
of the value of topological chargeq, a soliton with velocity
s50.05 reflects from this point defect, but fors50.5, moves
through the point defect with negligibly small energy loss

The point defect in the homogeneousGC chain leads to
the formation of localized potential well with depth 150 k
mol @see Fig. 10~b!#. Almost at all values of the velocity the
soliton easily propagates along this chain without format
of a bound state. Thus we can conclude that soliton mov
in the DNA chain with sufficiently large velocity (s.sd) is
stable with respect to point defects.

In the chain, one part of which consists of onlyAT base
pairs and the other of onlyGC base pairs, the energet
barrier takes the form of a smooth step@Fig. 10~c!#. The
height of the step is equal to the difference between the
ues of soliton energy in homogeneousGC and AT chains.
From data of Table IV it follows that the height of the step
equal to DE51065 kJ/mol for soliton with topologica
charge q5(1,0) and DE5844 kJ/mol for soliton withq
5(0,1), and whenq5(1,1) the energyDE51894 kJ/mol. A

FIG. 10. The view of energetic relief for soliton in the inhom
geneous chain: in homogeneousAT chain with oneGC base pair
~a!; in homogeneousGC chain with oneAT base pair~b!; in the
chain the first part of which consists of onlyAT base pairs, and the
second consists of onlyGC base pairs~c!; in the chain with random
sequence of base pairs~d!. Dotted line shows the relief of the soli
ton with topological chargeq5(1,0), firm line shows the relief for
soliton with chargeq5(1,1).
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soliton moving along a homogeneousAT region of the chain,
can enter intoGC region only if its kinetic energyEk(s)
.DE. As seen from Fig. 5, this condition is satisfied only
soliton velocitys.sk , where the threshold value of the ve
locity is determined by the equationEk(sk)5DE. For soliton
with q5(1,0) the velocitysk50.48, for q5(0,1) sk50.59,
and forq5(1,1) the velocitysk50.52.

Let us numerically model the soliton moving from hom
geneousAT region of the chain to homogeneousGC region.
The results of the modeling show that the soliton with velo
ity s50.05,sk and with any topological charge reflects ela
tically from the boundary between the regions. At a giv
velocity the soliton kinetic energy is not large enough
overcome energetic barrier@Ek(s)!DE#. Soliton with s
50.5,q5(1,0) moves through the boundary between hom
geneous regions and its motion is accompanied by emis
of phonons. Inside the region consisting ofGC base pairs,
soliton continues to move, but with a smaller magnitude
the velocity~Fig. 11!. For a given value ofq the threshold
value of the velocitysk50.48,0.5. So, the kinetic energy o
soliton is large enough to overcome energetic barrier.
cause the main part of the kinetic energy is spent to ov
come the barrier, the velocity of the soliton substantially d
creases after overcoming the barrier. Whenq5(0,1) the
threshold value of the velocitysk50.59 and soliton reflects
at s50.5 from the boundary of the homogeneous regio
The reflection is accompanied by phonon emission. For s

FIG. 11. Movement of soliton withq5(1,0), s50.5 through the
boundary between homogeneousAT andGC regions.
4-10
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NONLINEAR DYNAMICS OF TOPOLOGICAL SOLITONS IN DNA PHYSICAL REVIEW E66, 016614 ~2002!
ton with the chargeq5(1,1) the velocitys50.5,sk50.52
is not enough to overcome energetic barrier. Collision
soliton having topological charge@q5(1,1)l # with the
boundary between the homogeneous regions leads to the
integration of the soliton. It disintegrates into two on
component solitons with the chargesq15(1,0) and q2
5(0,1). The soliton with the chargeq2 continues to move
into GC region of the chain, and then soliton with the char
q1 reflects from the boundary.

Let us consider the propagation of soliton in the inhom
geneous chain with random sequence of bases. In this
random energetic reliefE(n) is formed. The amplitude of the
relief for soliton withq5(1,0) reaches 1000 kJ/mol, and fo
soliton with q5(1,1) it is 1500 kJ/mol@Fig. 10~d!#. It is
obvious that uniform propagation of soliton in the chain
that type is impossible, because soliton loses part of the
ergy for phonon emission when crossing each homogen

Let us consider the movement of soliton through the
homogeneous region of the chain. For the purpose, le
suggest that the second part of the chain is formed b
random equal-possible sequence of base pairsAT,TA,CG,
GC. The results of numerical modeling of the soliton d
namics show that soliton with small value of the velocitys
50.05 and with any topological charge reflects from t
boundary of the inhomogeneous region. This points out,
penetration of the soliton into the inhomogeneous region
quires the overcoming of some energy barrier. The soli
with larger velocitys50.5 and chargeq5(1,0) overcomes
this barrier, enters the disordered region of the chain
stops there. The movement in the disordered region is
companied by intensive emission of phonons, which lead
the stoppage of the soliton. The soliton withqÄ(0,1) cannot
overcome the barrier even at this value of the velocity. T
soliton reflects from the boundary of the inhomogeneous
gion. The reflection is accompanied by emission of phono
A two component soliton withq5(1,1)l enters inhomoge-
neous region, and at the same time it disintegrates into
one-component solitons with the chargesq15(1,0) andq2
5(0,1). The solitons move some time in the inhomogene
chain, then they stop~Fig. 12!. The path of the solitons ca
reach several hundred base pairs.

Analogous results have been obtained even in the c
when an inhomogeneous region was formed by the b
pairs AT and TA. Thus, the sequence of nitrous bases
DNA molecule should substantially influence the charac
istics of the motion of topological soliton. Note, that it h
been pointed out first in the work@25#.

VIII. INTERACTION OF TOPOLOGICAL SOLITONS
WITH THERMAL OSCILLATIONS OF THE CHAIN

Dynamics of a thermalized chain consisting ofN sites, is
described by the system of the Langevin equations

I n,1ẅn,152
]H

]wn,1
1jn,12GI n,1ẇn,1 ,

I n,2ẅn,252
]H

]wn,2
1jn,22GI n,2ẇn,2 , ~19!
01661
f

is-

-
se

f
n-
ty.
-
us
a

at
-

n

d
c-
to

e
-

s.

o

s

se
se
f
r-

n51,2, . . . ,N,

where the Hamiltonian of the systemH is given by Eq.~1!,
jn,i are random normally distributed forces describing t
interaction of thenth base of thei th chain (i 51,2) with
thermal bath,G51/t r is the coefficient of friction,t r being
the relaxation time of the rotation velocity of one base. T
random forcesjn,i have normal distribution and the correla
tion functions are

^jn,i~ t1!jm, j~ t2!&52GkBTdnmd i j d~ t12t2!AI n,i I n, j ,

n,m51,2, . . . ,N, i , j 51,2,

wherekB is Boltzmann’s constant andT is the temperature o
thermal bath.

The system~19! was integrated numerically by the sta
dard fourth-order Runge-Kutta method with constant step
integrationDt. The d function was represented asd(t)50
when utu.Dt/2, and d(t)51/Dt when utu<Dt/2, i.e., the
step of numerical integration corresponded to the correla
time of the random force. In order to use the Langevin eq
tion, it was necessary to suggest thatDt!t r . Therefore we
choseDt50.001 ps and the relaxation timet r>1 ps.

Let us check the stability of topological soliton with re
spect to thermal oscillations of the chain. For this purpo
let us consider a homogeneous periodicalAT chain consist-

FIG. 12. Entering two-component soliton@chargeq5(1,1)l , ve-
locity s50.5# the random inhomogeneous region of the chain, a
further disintegration of the soliton.
4-11
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L. V. YAKUSHEVICH, A. V. SAVIN, AND L. I. MANEVITCH PHYSICAL REVIEW E 66, 016614 ~2002!
ing of N54000 base pairs at the temperatureT5300 K. Let
us integrate system~13! with the initial condition corre-
sponding to topological soliton (s50.5) with center placed
in the pointn5N/4. Numerical integration shows stability o
solitons at all values of the charge and at both values of
transverse rigidityK50.234 N/m andK50.8714 N/m. The
viscosity of the environment leads to quick stoppage of
soliton, and after that all the time it remains immovable. T
soliton remains stable with respect to thermal oscillatio
during all the time of numerical integrationt553103 ps
~Fig. 13!.

Let us note that in contrast to the models off-4 and of
sine-Gordon the stability of solitons in the DNA model is n
of topological nature. Solitons can be destroyed. To sh
this, it is enough to suggest that the soliton width is equa

FIG. 13. Stability of topological soliton@q5(1,1)l , s50.5# in
the thermalized homogeneousAT chain (T5300 K, t r51 ps). De-
pendence of the distribution of angular displacementswn,1 ,wn,2 and
energyEn along the chain on timet is shown (K50.234 N/m).
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one base pair~soliton of that type is equivalent to the groun
state of the chain!. Here the stability is associated with ene
getic factors. From Fig. 13 it is well seen that in the region
localization of the soliton, the density of the energy is eq
to En@kBT.

Soliton path length in the thermalized homogeneous ch
(T5300 K) depends on the value of relaxation timet r , i.e.,
on the viscosity of the surroundings of the molecule.
strong viscosityt r51 ps soliton has time to pass only sev
chain links till full stop. Then it remains immovable all th
time ~Fig. 13!. When the viscosity is lower,t r510 ps, and
the soliton has time to pass 41 links, and whent r5100 ps
the soliton passes 480 links. The braking of soliton at l
viscosity (t r51000 ps) is shown in Fig. 14. Soliton pass
more than 3000 chain links, and then it begins to move a
massive Brownian particle.

The braking of soliton in the homogeneous chain is co
ditioned only by viscosity. When the viscosity is absentt r
5`) soliton is moving along thermalized chain with co

FIG. 14. The braking of topological soliton@chargeq5(1,1)l ,
initial velocity s50.5# in the thermalized cyclic homogeneousAT
chain (T5300 K, K50.234 N/m, andt r51000 ps).
4-12
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NONLINEAR DYNAMICS OF TOPOLOGICAL SOLITONS IN DNA PHYSICAL REVIEW E66, 016614 ~2002!
stant velocity~Fig. 15!.Thetmal phonons by themselves d
not influence the soliton dynamics.

Let us note that topological soliton can move along
DNA chain in the presence of viscosity too. To organize
propagation it is necessary to select in a special way
sequence of bases. If concentration ofAT base pairs mono
tonically increases, inclined potentialE(n) is formed. The
energy overfall can reach 1116 kJ/mol atK50.234 N/m and
1894 kJ/mol atK50.8714 N/m. Soliton will propagate alon
the relief inclination as a Brownian particle moving in th
viscous media under the action of an external constant fo

Thermal phonons substantially influence the interaction
solitons. In the work@42#, it was shown that topologica
solitons of the modelf-4, can interact with one anothe
through thermal phonons. This interaction comes to rep
sion of the solitons. As a result, in the thermalized chain
interaction of the solitons of different charges substantia
changes. At a long distance they will repulse. To model t
phenomenon, let us consider collision of solitons with diff

FIG. 15. Movement of topological soliton@chargeq5(1,1)l ,
initial velocity s50.5# in the thermalized cyclic homogeneousAT
chain (T5300 K, K50.234 N/m, andt r5`).
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ent charges and polarities in the thermalized cyclicAT chain
@q15(1,1)l , q25(21,21)r , s152s250.5#. In the non-
thermalized chain (T50 K), the solitons attract one anothe
and the collision leads to their recombination. In the therm
ized cyclic chain (T5300 K), their collision always leads to
reflection~Fig. 16!. This behavior can be explained by com
pression of phonons gas between solitons when they
drawing together. The compression leads to the repulsio
solitons, which increases as much as they are drawn toge
In the chain with free ends, the compression of the phon
gas leads to long-range repulsion of the solitons from
ends of the chain.

Thus, topological solitons of the DNA chains are stab
with respect to thermal oscillations. Interaction with therm
phonons does not lead to destruction or to the braking of
soliton, it leads only to changing the interaction between
solitons. In the thermalized chain, long-range repulsion
tween solitons is observed.

IX. CONCLUSION

The investigation carried out in this paper shows th
three types of topological solitons that imitate localiz
states with open base pairs, can exist in the considered a

FIG. 16. Reflection of topological solitons with differen
charges and polarities@q15(1,1)l , q25(21,1)r , s152s250.5! in
the thermalized (T5300 K) cyclic homogeneousAT chain (K
50.234 N/m,t r5`).
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metrical model of the DNA double chain. It was shown th
the solitons can move along the macromolecule with c
stant velocity that is smaller than the velocity of sound.
the inhomogeneous chain, the character of the soliton mo
ment depends on the sequence of base pairs in the mole
In the chain with random inhomogeneous sequence, soli
can move at a distance no more than several hundred
base pairs. The results of numerical investigations show
the solitons are stable with respect to thermal oscillatio
n-

a-

i-
ns
.

,

l.

m
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Interaction of the solitons with thermal phonons of the ma
romolecule does not lead to the destruction or to the brak
of the solitons. And only the character of their interactio
changes. The drawing of the solitons together leads to t
repulsion, which is explained by the compression of phon
gas between them.

All these results point out the fact that topological solito
of this type can be used to explain the long-range effect
the DNA macromolecule.
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